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Abstract. The family of power semicircle distributions defined as normal-

ized real powers of the semicircle density is considered. The marginals of

uniform distributions on spheres in high-dimensional Euclidean spaces are

included in this family and a boundary case is the classical Gaussian dis-

tribution. A review of some results including a genesis and the so-called

Poincaré’s theorem is presented. The moments of these distributions are re-

lated to the super Catalan numbers and their Cauchy transforms in terms

of hypergeometric functions are derived. Some members of this class of dis-

tributions play the role of the Gaussian distribution with respect to additive

convolutions in non-commutative probability, such as the free, the monotone,

the anti-monotone and the Boolean convolutions. The infinite divisibility of

other power semicircle distributions with respect to these convolutions is stud-

ied using simple kurtosis arguments. A connection between kurtosis and the

free divisibility indicator is found. It is shown that for the classical Gaussian

distribution the free divisibility indicator is strictly less than 2.
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1. Introduction

The semicircle or Wigner distribution plays an important role in several fields

of mathematics and its applications. In random matrix theory it is the asymp-

totic spectral measure of the Wigner ensembles of random matrices, including the

Gaussian ensembles; see Metha [34], Khorunzhy et al. [27], Wigner [48]. In the

context of representations of symmetric groups, it is the limiting distribution of

a Markov chain of Young diagrams; see Kerov [24] and Kerov and Vershick [25].

It is known that the semicircle distribution is an infinitely divisible distribution

not in the classical but in the free sense, where it plays the role the Gaussian

distribution does in classical probability; see Hiai and Petz [18] and Nica and Spe-

icher [39]. Furthermore, the even moments of the semicircle distribution are the

Catalan numbers which appear in combinatorics and other unexpected places; see

for example Brualdi [11] and Gardner [15].

The semicircle distribution on (− ),   0, has a density given by

0( ;) =
2

2

p
2 − 21(−)()

We consider distributions constructed from real powers of the semicircle density.

For   −32 and   0, let

( ;) = 0 (0( ;))
2+1

= 
¡
2 − 2

¢+12
1||≤ (1.1)

where

0 =
³
2

´2+1 2√


Γ( + 2)

Γ( + 32)
and  =

1√
2

Γ( + 2)

Γ( + 32)


A distribution with density (1.1) is called a power semicircle distribution and is

denoted by ( ). It is a symmetric compactly supported distribution with

shape parameter  and range parameter .

When  = 2( + 2) is an integer, the corresponding power semicircle distrib-

ution appears naturally as the distribution of the one-dimensional marginals of

the uniform measure on a sphere of radius
√
 in R, as explained, for example,

in Kac [22], Kingman [28] and Diaconis and Freedman [12]. On the other hand,

( ;
p
( + 2)2) converges, when  → ∞ to the classical Gaussian density

(
√
2)−1 exp(−2(22)), a result known as Poincaré’s theorem and which goes

back to the works of Mehler, Maxwell, Borel and Lévy, amongst others; see Di-

aconis and Freedman [12] and Johnson [21]. As pointed out by Mc Kean [33],

Poincaré’s theorem explains why one can think of the Wiener measure (all whose

marginals are Gaussian) as the uniform distribution on an infinite dimensional

spherical surface of radius
√∞; a result the second author learned first from pro-

fessor Gopinath Kallianpur, to whom this paper is dedicated.

Since the power semicircle distributions have compact support, they are not

infinitely divisible in the classical sense. However, this family contains all the

"Gaussian distributions" with respect to the five additive convolutions of proba-

bility measures on R that are important in non-commutative probability; namely,
the commutative, the free, the Boolean, the monotone and the anti-monotone
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convolutions. These convolutions correspond to the only five independences, as

studied in Muraki [37].

The left-boundary case  = −32 is the symmetric Bernoulli distribution on
{− } playing the role of Gaussian distribution in Boolean convolution (Speicher
and Woroudi [44]). For  = −1 we obtain the arcsine distribution on (− ) which
plays in monotone convolution the role Gaussian distribution does in classical

probability (Franz and Muraki [14]). The case  = 0 is the semicircle distribution

on (− ) and the right-boundary case  =∞ given by Poincaré’s theorem is the

classical Gaussian distribution. Other important families of compactly supported

distributions which are useful in non-commutative probability and that include

the arcsine and semicircle distributions are considered in Kubo, Kuo and Namli

[29], [30] and references therein.

The main purpose of this present article is to study the infinite divisibility of

other power semicircle distributions with respect to the five additive convolutions

in non-commutative probability. In order to do this, we first derive simple nec-

essary conditions based on the kurtosis of a distribution. The use of kurtosis is

motivated by the fact that in non-classical infinite divisibility several distributions

with bounded support are relevant; see for example Anshelevich [1] and Bozejko

and Bryc [10]. We also prove that the Boolean kurtosis bounds the free divisibility

indicator that was recently introduced by Belinschi and Nica [5]. For some other

simple conditions for infinite divisibility based on the first few cumulants of a dis-

tribution see the recent works by Młotkowski [36] for the free case and Hasebe and

Saigo [19] for the monotone convolution case.

As one of the main results of this paper, we show that if ◦ is the value of

the shape parameter of the "Gaussian distribution" (◦  1) with respect to the

corresponding convolution ◦, then the power semicircle distribution ( 1) is not
infinitely divisible with respect to the convolution ◦, for   ◦ . We also include

results and conjectures on the free infinite divisibility of the classical Gaussian

distribution, a result recently proved in Belinschi et al. [4]. In particular, we show

that the free divisibility indicator of the classical Gaussian distribution is strictly

less than 2.

The organization of the paper is as follows. Section 2 presents the main features

and properties of power semicircle distributions, including Poincaré’s theorem.

We also derive their moments and show that they are given in terms of super

Catalan numbers. As a consequence the Cauchy transforms of these distributions

are derived in terms of hypergeometric functions. Section 3 starts with preliminary

material on the analytic approach to free, monotone, anti-monotone and Boolean

convolutions and the corresponding infinite divisibility concept with respect to

these convolutions. It also derives criteria for infinite divisibility based on the

kurtosis of a distribution. The free and the monotone infinite divisibility properties

of the symmetric beta distributions considered in Arizmendi et al. [3] are studied.

A connection between kurtosis and the free divisibility indicator is also included.

Section 4 applies the kurtosis conditions to find the non infinite divisibility of some

power semicircle distributions with respect to above non-classical convolutions.

We finally include results on the free infinite divisibility of the classical Gaussian

distribution.
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2. Properties of PSCD: A Review

In this section we present several facts and properties of power semicircle dis-

tributions including a recursive representation, Poincaré’s theorem, moments and

their Cauchy transforms.

2.1. Representations of the classical Gaussian law. The classical Gaussian

distribution has the representation of a scale mixture of chi-square distributions

with an appropriate power semicircle distributions. This fact is useful to obtain

properties of power semicircle distributions.

For positive   let Gam( ) denote the Gamma distribution with density

() =
1

Γ()
−1 exp(−


)   0 (2.1)

For any   −32 let +2 = 2
2(+2)

denote a random variable with chi-square

distribution with 2( + 2) degrees of freedom and independent of the random

variable  with power semicircle distribution ( 1).

The proof of the following representation theorem of the Gaussian distribution

follows easily using the change of variable formula for densities.

Theorem 2.1. Let   −32 and let +2 be a random variable with Gamma

distribution Gam( + 2 2) and independent of the random variable  with power

semicircle distribution ( 1). Then

 =
√
+2 (2.2)

has a standard Gaussian distribution (0 1)

Proof. We shall use the trivial fact that if  is a nonnegative random variable inde-

pendent of a symmetric random variable  , with densities  and  respectively,

then the density of  =
√
  is given by

() = ||
Z ∞
−∞

1

2
 () (

2

2
)  ∈ R (2.3)

Using (1.1) and (2.1) in (2.3) we easily obtain

() = ||
Z ∞
−∞

1

2
()(+22)(

2

2
)d

= ||
Z 1

−1

1

2
01(

2



p
1− 2)2+1

1

2+2

(
2

2
)+1

Γ( + 2)
−

2(22)d

(=1)
= (

1√

)
||2+3
Γ( + 32)

1

2+1

Z ∞
1

( 
2−1
2
)+

1
2 2+4

2
−

222d

(=2−1)
= (

1√

)
||2+3
Γ( + 32)

1

2+2
−

22

Z ∞
0

+
1
2 −

22d

= (
1√
2
)
||2+3
Γ( + 32)

−
22

2+3
Γ( + 32) =

1√
2

−
22

which proves the result. ¤
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Recall that a one-dimensional random variable  is said to be variance mixture

of Gaussian if the probability distribution of  is of the form
√
 (in short



=
√
), where  and  are independent random variables with  being

positive random variance and  having the normal distribution with zero-mean

and variance one; see [23], [42], [47].

Corollary 2.2. If 

=
√
  is a variance mixture of the Gaussian distribution,

then for any   −32,  
=
p
 +2 where +2 is a random variable with

Gamma distribution Gam( + 2 2)  has power semicircle distribution ( 1)

and  +2 and  are independent random variables.

Power semicircle distributions were considered by Kingman [28], who also de-

fined a convolution of probability measures on R+. It has been recently proved in
Nguyen [38] that the Bessel processes generated by +2 play for Kingman con-

volution the role Brownian motion does in classical convolution. We learned this

result from Geronimo Uribe.

2.2. Recursive representation. Ledoux [31] pointed out that the semicircle

distribution is a scale mixture of the arcsine distribution with the uniform distri-

bution. The following proposition is a generalization of this result giving a useful

recursive representation for power semicircle distributions.

Proposition 2.3. Let  ≥ −32. Then  
=
√
1(+1)−1 where  is a random

variable with uniform distribution on (0 1) independent of the random variable

−1 with power semicircle distribution (−1 1) Moreover, 2

= 

1(+1)

2−1

Proof. The density of 1(2(+1)) is 1(2(+1))() = 2( + 1)2+1, 0    1 Let

 = 1(2(+1))−1 then the density of  is found as follows: For  ∈ (−1 1),

 () =

Z ∞
−∞

1

||−1()1(2(+1))(



)d

= 2
Γ( + 1)√
Γ( + 12)

( + 1) ||2+1
Z 1



(
p
1− 2)2−1

2+2
d

(=sin()
= 2

Γ( + 2)√
Γ( + 12)

||2+1
Z 2

arcsin()

cos()2

sin()2+2
d

=
Γ( + 2)√
Γ( + 32)

³p
1− 2

´2+1
= 01(

2



p
1− 2)2+1 = ()

The second statement is a trivial observation. ¤

As a consequence of the above theorem one can derive representations for some

power semicircle distributions as variance mixtures of the arcsine and the semicir-

cular distributions.

Corollary 2.4. For  = 1 2 



=
p
0
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where 0 has a semicircle distribution on (−1 1) and is independent of the random
variable 


=
Q

=1 
1
+1

 , where 1   are independent random variables with

uniform distribution on (0 1) Moreover, for  = 1 2  

=
√
−1 where 

has an uniform distribution on (0 1) and is independent of 

In fact, any power semicircle distribution ( 1)   −1, is a variance mixture
of the arcsine distribution as follows. We provide the proof of this result in Section

2.5 using Cauchy transforms.

Proposition 2.5. For   −1  
=
√
1− 1(1+)−1 where  has an uniform

distribution on (0 1) and is independent of the arcsine random variable −1 on
(−1 1)
2.3. Poincaré’s theorem. An important consequence of Theorem 2.1 is the fact

that the sequence of random variables (), appropriately scaled, converges in dis-

tribution, when  goes to infinite, to the standard classical Gaussian distribution.

This result is a Poincaré’s type theorem which already appears in the works of

Mehler [35] in 1866 and Borel [8] in 1914. One can easily deduce this result from

Theorem 2.1. For another proof see, for example, the Remark in page 387 of

Khokhlov [26].

Theorem 2.6. Let  have the power semicircle distribution ( 1), for  =

0 1 2  Then the sequence of random variables
n
(
p
2(+ 2)

o
≥1

converges in

distribution to the standard classical Gaussian distribution.

Proof. By the law of large numbers, ( + 2)−1+2 converges in probability to
(1) = 2, where  ∼ Gam( 2). Hence from (2.2) and using Slutsky’s theorem

we have p
2(+ 2) =

p
2(+ 2) (+2)

−12
 ⇒→∞ 

which gives the proof. ¤
A modelling feature of Poincaré’s theorem is the fact that, for large , one can

use the power semicircle distribution ( 2( + 2)) as an alternative symmetric

model to the Gaussian distribution with the advantage of having finite range. This

is specially useful when there is a knowledge of the range of the measurements, as

the case of some problems in Metrology; see Lira [32]. This raises the question of

the speed of convergence, a problem studied by Stam [46], Diaconis and Freedman

[12], Borovkov [9], Johnson [21] and Khokhlov [26], amongst others.

The following multivariate version of Poincaré’s theorem and the rate of conver-

gence is considered in [12], [26], [46]. Recall that the variational distance between

two absolutely continuous distributions  and  on R, with corresponding den-
sities  and  is given by

() =

Z
R

µ
(x)

(x)
− 1
¶+

(x)dx

Theorem 2.7. Let X= (
1  


 ) be a random vector with a uniform distri-

bution on the sphere S() of radius
√
 in R and let  ≥ 1 be fixed. Then, the

distribution of the -dimensional vector
√
(

1  

 ) converges, as  goes to
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infinity, to the distribution of the vector (1  ) where 1   are inde-

pendent standard normal variables.

Rates of convergence in the above theorem are presented in [26], improving

bounds given in [12]. They are given as follows: Let  be the variational distance

between the vectors (1  ) and
√
(

1  

) Then, for  even,

1

4




0085 ≤  ≤ 1

2

 + 2

−  − 2
while for  odd,  ≥ 3

1

4

 − 1


0085 ≤  ≤ 1
2

 + 3

−  − 3
where for the lower bounds the restrictions  ≤ 14  ≥ 8 are needed, while
that for the upper bounds 1 ≤  ≤ − 4 For  = 1 and  ≥ 12

0005

µ
3

4
+

1

22

¶
≤ 1 ≤ 2

− 4 

From the above considerations we obtain that the power semicircle distribution

( ) with  = 2( + 2)  = 20 is such that 8065× 10−5 ≤ 1 ≤ 005
It is an open problem to study the rate of convergence in Poincaré’s theorem

using Stein’s method. See Reinert [41] for a review of this powerful method to

study rates of convergence to the Gaussian and other distributions.

2.4. Moments. Using the representation (2.2) and the moments of the Normal

and Gamma distributions one can easily obtain the absolute moments and mo-

ments of the power semicircle distributions. The latter are given in terms of the

Catalan numbers

 =

¡
2


¢
 + 1

which are the even moments of the standard semicircle distribution (0 2)

Proposition 2.8. Let  be a random variable with power semicircle distribution

( ), for   −32   0. Then,

a) For any   0

 || = √

Γ(2 + 12)

Γ( + 2)

Γ( + 2 + 2)


b) For any integer  ≥ 1  = 0 and

2 =
³
2

´2
( + 1)!

Γ( + 2)

Γ( + 2 + )


c) If  is an integer

2 =

¡
2


¢¡
++1



¢ ³
2

´2

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Proof. It is enough to consider the case  = 1. It is well known that for   0

 || = 22√

Γ(2 + 12)

and


2

+2 = 2
2Γ( + 2 + 2)

Γ( + 2)


Hence, using the independence of  and 2+1, from (2.2) we obtain

 || = 1√

Γ(2 + 12)

Γ( + 2)

Γ( + 2 + 2)


When  is an integer, by symmetry  = 0. On the other hand, taking  = 2

we have Γ(2 + 12) =
√
2−2(2)!! Thus,

2 =
1

2
( + 1)!

Γ( + 2)

Γ( + 2 + )


which gives (b). Finally, we observe that

2 =
1

2
( + 1)!

( + 1)!

( + 1 + )!
=
1

2

¡
2


¢¡
++1



¢
which proves (c). ¤

For given   −32 the corresponding standard distribution (zero-mean and
vairance-one) is obtained when 2 = 2Γ( + 3)Γ( + 2) In particular, when  is

an integer, the corresponding standard distribution is given when 2 = 2( + 2)

On the other hand, when  is an integer, the even moments 
 =

¡
2


¢

¡
++1



¢
of ( 2( + 2)) are a kind of generalized Catalan numbers. Indeed, they are

different from the so-called super Catalan numbers by a factor
¡
2(+1)
+1

¢
and ( +

2)(+3) · · · (2+1)
 is an integer multiple of !We refer to Gessel [16] or Hilton

and Pedersen [20] for the study of this kind of generalized Catalan numbers.

2.5. Cauchy transform. The Cauchy transform plays an important role in the

study of different convolutions of probability measures in non-commutative proba-

bility and their related infinitely divisible aspects. For a Borel probability measure

 on R, its Cauchy transform is defined as

() =

Z ∞
−∞

1

 − 
(d)  ∈ C+

where C+ = { ∈ C : Im()  0}.
For power semicircle distributions, their Cauchy transforms are given in terms

of the Gauss hypergeometric function

F( ;  ) =
∞X
=0

()()

()!
 (2.4)

where for a complex  and a non integer  we use the Pochhammer symbol ()
to denote the expression () = ( + 1) · · · ( +  − 1)
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Proposition 2.9. The Cauchy transform  of ( ;) is given by

() = −1F(1
2
 1;  + 2;2−2) (2.5)

Proof. We follow the proof using the moment generating function, as done in [18]

for the semicircle distribution. From Proposition 2.8(b) we have

() = −1
∞X
=0

−22

= −1
∞X
=0

−2
³
2

´2 (2)!
!

Γ( + 2)

Γ( + 2 + )
 (2.6)

Using in (2.4) the expressions (+2) = Γ(+2+)Γ(+2), (12) = (2)!2
2

and (1) = !, from (2.6) we obtain (2.5) ¤

An alternative integral representation for the Cauchy transform follows from

the integral expression of the hypergeometric function; see Gradshteyn and Ryzhil

[17, eq. 9.111].

Corollary 2.10. For   −1

() = ( + 1)

Z 1

0

(1− )(2 − 2)−12d

Example 2.11. There is an explicit formula for the Cauchy transform of the

power semicircle distributions in the following special cases:

a) For the arcsine distribution on (− )
−1() = (2 − 2)−12

b) For the uniform distribution on (− )

−12() =
1

2
ln

 + 

 − 


c) For the semicircle distribution on (− )

0() =
2

2
( − (2 − 2)12)

Proof of Proposition 2.5. We have to prove that if  has uniform distribution on

(0 1) and is independent of the arcsine random variable −1 on (−1 1), then, for
  −1,

√
1− 1(+1)−1 follows a power semicircle distribution ( 1). From

Corollary 2.10, for   −1 and  = 1, we obtain

() = ( + 1)

Z 1

0

(1− )(2 − )−12d

Example (a) above says that (2 − )−12 is the Cauchy transform of the arcsine

density 1

(− 2)−12 on (−√√). Hence, using change of variables we have

() =

Z 1

−1

1

 − 
()d
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where

() = ( + 1)

Z 1

2
(1− )

1


(− 2)−12d

Observe that (+1)(1−) is the density of the random variable 1−1(+1) with
 uniformly distributed on (0 1). Thus, if −1 has arcsine distribution on (−1 1)
and is independent of  , a straightforward change of variables similar to the one

used in the proof of Proposition 2.3 shows that () is the density of the random

variable  = (1−1(+1))12−1. The uniqueness of the Cauchy transform gives
that  has distribution ( 1), for   −1 ¤

The following interesting relation between the power of the Cauchy transform

of the semicircle distributions and the generalized Cauchy transform of a power

semicircle distribution was recently proved in Demni [13]. For any  ∈ C+Z 2

−2

1

( − )
(4− 2)−12 = 

µZ 2

−2

1

2( − )

p
4− 2

¶
for a constant   0 and   0

3. Infinite Divisibility

Recall that the classical convolution of two probability measures 1 2 on R is
defined as the probability measure 1 ∗ 2 on R such that

C1∗2() = C1() + C2()  ∈ R
where C() = log b() with b() the characteristic function of  The classical
cumulants associated to this convolution are defined as the coefficients  = ()

in the series expansion

C() =
∞X
=1



!


The relation between the classical cumulants and the moments  = () is

related to the partitions  () of {1  }, that is
 =

X
∈ ()

Q
 ∈

| |

3.1. Convolutions and non-classical infinite divisibility. The reciprocal of

the Cauchy transform is the function  () : C+ → C+ given by  () =

1()

Free convolution and free cumulants

It was proved in Bercovici and Voiculescu [7] that there are positive numbers 

and  such that  has a right inverse 
−1
 defined on the region

Γ := { ∈ C; |Re()|   Im() Im()  } 
The Voiculescu transform of  is defined by

() = −1 ()− 
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on any region of the form Γ where −1 is defined; see [7]. The free cumulant

transform or -transform is a variant of  defined as

C¢ () = (
1


) = −1

µ
1



¶
− 1

for  in a domain  ⊂ C− such that 1 ∈ Γ where −1 is defined.

The free additive convolution of two probability measures 1 2 on R is the

probability measure 1 ¢ 2 on R such that 1¢2() = 1() + 2() or

equivalently

C¢1¢2() = C¢1() + C¢2()
for  ∈ 1 ∩2 .

Free cumulants were introduced by Speicher [45]. They are the coefficients

 = () is the series expansion

C¢ () = 1 +
∞X
=1




The relation between the free cumulants and the moments is related to the com-

binatorics of the lattice of non-crossing partitions (), namely,

 =
X

∈()

Q
 ∈

| |

Boolean convolution and Boolean cumulants

The Boolean convolution of two probability measures 1 2 on R is defined as
the probability measure 1 ]2 on R such that the transform () = −(),

(usually called the self energy), satisfies

1]2 () = 1() +2 ()   ∈ C+
see [44]. Boolean cumulants are defined as the coefficients  = () in the series

() = 1 +

∞X
=1




A relation between moments and Boolean cumulants is described in terms of the

combinatorics of the lattice of interval partitions (), namely,

 =
X

∈()

Q
 ∈

| |

Monotone convolution and monotone cumulants

The monotone convolution of two probability measures 1 2 on R is defined
as the probability measure 1 B 2 on R such that

1B2 () = 1 (2 ())   ∈ C+
and similarly, the anti-monotone convolution 1  2 is defined as the probability

measure on R such that 1C2 () = 2 (1 ())  for  ∈ C+; see [14].
Recently, Hasebe and Saigo [19] have defined the notion of monotone cumulants

()≥1 which satisfy that  (B ) = 2 () 
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3.2. Connections between kurtosis and infinite divisibility. Similar to the

definition of infinite divisibility with respect to classical convolution ([43]), it is said

that a probability measure  is infinitely divisible with respect to the convolution

◦ if for every positive integer  there exists a probability measure  such that
 =  ◦  ◦ · · · ◦ | {z }

 times

.

The kurtosis of a distribution is useful to derive a simple necessary conditions for

infinitely divisible with respect to the classical, free, monotone and anti-monotone

convolutions. It is known that for the Boolean convolution all distributions on R
are infinitely divisible.

The classical kurtosis of a probability measure  with finite fourth moment is

defined as

() =
4()

(2())2
=

e4()

(e2())2
− 3

where 2() and 4() are the second and fourth classical cumulants, and e2()

and e4() the second and fourth moments around the mean. It is always true

that () ≥ −2.
In Steutel and Van Harn [47] a necessary condition for the classical infinite di-

visibility of a distribution based on the first fourth classical cumulants is presented.

Below we present a condition based on the kurtosis.

Proposition 3.1. Let  be a probability measure on R with finite fourth moment.
If  is infinitely divisible in the classical sense then () ≥ 0.
Proof. It is well known that if  = 1 + · · · +  is the sum of  identical

random variables which are independent in the classical sense, all with the same

distribution as , then [ ] = []. (This is only the fact that classical

cumulants are additive with respect to classical convolution). In other words,

() = ( ∗ · · · ∗ | {z }
 times

)

Suppose that  is infinitely divisible in the classical sense and () =   0.

Let  be such that  ∗ · · · ∗ | {z }
 times

= Since () = () = , we

can choose  large enough such that   −2, which is a contradiction since
 ≥ −2. ¤

The free kurtosis is defined similarly using the free cumulants instead of the

classical cumulants. That is, the free kurtosis of a probability measure  is defined

as

¢ () =
4()

(2())2
=

e4()

(e2())2
− 2 = () + 1

where (())≥0 is the sequence of free cumulants.
Let Λ denote the Bercovici-Pata bijection [6] between classical and free infinitely

divisible distributions. Since this bijection preserves cumulants, we have

¢ (Λ()) = ()
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Since 4(¢ · · ·¢ ) = 4() and 2(¢ · · ·¢ ) = 2() we have similarly

as for the classical case that if  = 1+ · · ·+ is the sum of  non-commutative

random variables which are independent in the free sense, all with the same spectral

distribution as , then

¢ [ ] = ¢ []

Thus, using similar arguments as for Proposition 12, we have that if the probability

measure  on R is infinitely divisible in the free sense then ¢ () ≥ 0. The
following result is a criterion for a measure to be free infinitely divisible in terms

of the classical kurtosis.

Proposition 3.2. Let  be a probability measure on R with finite fourth moment.
If  is infinitely divisible in the free sense then () ≥ −1
Proof. Let  be free infinitely divisible. Since ¢ () = () + 1 and

¢ () ≥ 0, we get the result. ¤

The monotone kurtosis of a zero-mean distribution  is defined as

B () =
24()− 32()

2

2(2())2
= () + 15

Recently Hasebe and Saigo [19] defined the monotone cumulants ()≥0. Hence,
the monotone kurtosis defined in this paper can be regarded as

B () =
4()

(2())2


The following result gives a necessary condition in terms of kurtosis for a mea-

sure with zero-mean to be infinitely divisible with respect to monotone convolution.

Proposition 3.3. Let  be a probability measure on R with zero-mean and finite
fourth moment. If  is infinitely divisible with respect to monotone convolution

then () ≥ −15
Proof. It is enough to prove thatB ≥ 0 For zero-mean measures the following
identities hold

4( B ) = 4() +4() + 32()2() (3.1)

2( B ) = 2() +2() (3.2)

Hence, using (3.1) and (3.2) we have

B ( B ) =
24( B )− 32( B )2

2(2( B ))2

=
2(24() + 32()

2)− 3(22())
2

2(22())2

=
44()− 62()

2

82()2
=
1

2
B ()

Suppose now that  is infinitely divisible with respect to monotone convolution
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and  = B  0. Using repeatedly the fact that B () = 2B ( B ),

we obtain

B () = 2B ( B · · · B | {z }
2 times

)

Let  be such that  B · · · B | {z }
2 times

=  Hence B () = 2B () = 2.

Again, choosing  large enough so that 2  −2 we get a contradiction since for
all , B () = () + 15  () ≥ −2 ¤

Example 3.4. Symmetric Beta Distribution. We illustrate the above criteria

in the case of the family of symmetric beta distributions. Recall that for    0 a

probability measure has a symmetric beta distribution ( ) if it is absolutely

continuous with density function

 () =
1

2( )
||−1 (1− ||)−1, ||  1

It was shown in [3], that the symmetric beta distribution (12 32) is free

infinitely divisible. Therefore, a natural question is whether other members of this

family are infinitely divisible in the free sense. If  is a symmetric beta distribution

( ) the kurtosis of  is given by

() =
(+ 2)(+ 3)(+ )(+  + 1)

(+ 1)(+  + 2)(+  + 3)
− 3

Thus, from Proposition 3.2 we have that if  is free infinitely divisible the following

inequality must hold

(+ 2)(+ 3)(+ )(+  + 1) ≥ 2(+ 1)(+  + 2)(+  + 3). (3.3)

In particular, when  =  we have that if   725 then ( ) is not ¢-
infinitely divisible. Taking  = 12, we have that (12 ) is not ¢-infinitely
divisible for   12. Observe that (12 32) satisfies the inequality (3.3).

In a similar way, from Proposition 3.3 we have that if  is monotone infinitely

divisible the following inequality must hold

(+ 2)(+ 3)(+ )(+  + 1) ≥ 3
2
(+ 1)(+  + 2)(+  + 3).

Using similar ideas we define, for a probability measure  on R with zero-mean
and fourth moment, the Boolean kurtosis as

]() =
4()

(2())2
= ¢ () + 1 = () + 2 (3.4)

We might expect to obtain a similar criterion as above for Boolean infinite di-

visibility, but since any measure is infinitely divisible with respect to Boolean

convolution, this would only lead to the fact that kurtosis is greater than −2.
Instead of this we shall end this section with the study of a connection between

the Boolean kurtosis and the following remarkable and useful family of homo-

morphisms introduced in Belinschi and Nica [5]. Let P be the class of all Borel
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probability measures on the real line R. For  ∈ P and every  ≥ 0 consider the
transformation B : P → P

B() =
³
¢(1+)

´]1(1+)
(3.5)

and the ¢-divisibility indicator
() := sup{ ∈ [0∞] |  ∈ B(P)}.

The relation between B(), the ¢-divisibility indicator and free infinite divisibility
is given in the following proposition due to [5]. Let B() denote the Boolean
Bercovici-Pata bijection that sends a distribution  into a free infinitely divisible

distribution B().

Proposition 3.5. Let  ∈ P. The following statements hold
a) B1() = B()∀ ∈ P.
b)  is infinitely divisible with respect to ¢ if and only if () ≥ 1
c) There exists a free infinitely divisible distribution  such that  = B() if

and only if () ≥ 2
One useful property that allows us to calculate () for some probability mea-

sures is the following: For each   0

(B()) = () +  (3.6)

We can prove a similar relation to (3.6) using Boolean kurtosis instead of 

Proposition 3.6. Let  be a probability measure on R having zero-mean and

fourth moment. Then for each   0

](B()) = ]() +  (3.7)

Proof. Since Boolean cumulants are additive with respect to the Boolean convo-

lution, we have that for each   0 ](]) = 1

]() and similarly

¢ (¢(1+)) =
1

(1 + )
¢ ()

Hence, using (3.5) and (3.4) we obtain

](B()) = ]
µ³

¢(1+)
´]1(1+)¶

= (1 + )]
³
¢(1+)

´
= (1 + )

³
¢

³
¢(1+)

´
+ 1
´

= (1 + )

µ
1

1 + 
¢ () + 1

¶
= ]() + 

¤

Using (3.7) and Propositions 3.2 and 3.5, we obtain that the Boolean kurtosis

is an upper bound for the free divisibility indicator.
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Theorem 3.7. Let  be a probability measure on R with zero-mean and fourth

moment. Then

]() ≥ () (3.8)

with equality if and only if  = B((−32 2) for some   0 Moreover
() = () = ](B())− (B()) ≥ 0 (3.9)

depends only on 

Proof. Using (3.6) and (3.7) we have that for each   0

]()− () = ](B())− (B())

Hence () = () is independent of . We would like to prove that () ≥ 0.
If () = 1 by Proposition 3.5  is infinitely divisible with respect to ¢ and then
by Proposition 3.2 we have ]() ≥ 1 Hence () ≥ 0. If ()  1 let  =

B1−()(). Then by (3.6), () = 1 and hence () = (B1−()()) = () ≥ 0
If ()  1 we have  = B()−1() for some probability measure  on R. Using
(3.6) we have () = ((B()−1()) = () + ()− 1 and hence () = 1. This
gives 0 ≤ () = (B()−1() = (). Then (3.8) is proved.

On the other hand, it has been shown in [5] that ((−32 2)) = 0 and it
is well known that ((−32 2)) = −2 hence ]((−32 2)) = 0
Thus, equality in (3.8) holds for  = (−32 2) and by (3.9) it also hods for
B((−32 2), for   0
Suppose now that ]() = () =  for some   0. From [5, Remark 5.5]

we have that there exists  such that  = B() Using again (3.6), we have that

]() = ]()−  = 0 (3.10)

This means that  = B() and () = ]() − 2 = −2, which can only
happen if  is the symmetric Bernoulli distribution (−32 2). ¤
Remark 3.8. a) The semicircle and the arcsine distributions satisfy the equality in

(3.8). This follows since B12((−32 1)) = (−1 1) and B1((−32 1)) =
(0 1); see [5].

b) If  is the classical Gaussian distribution,  does not satisfy the equality in

(3.8). This follows since there does not exist   0 such that  = B((−32 2),
a fact that can be easily proved using (4.13) in Example 4.5 in [5].

4. Infinite Divisibility of PSCD

We now use the kurtosis conditions of the last section to study the infinite divis-

ibility of the power semicircle distributions with respect to different convolutions.

We recall that the symmetric Bernoulli distribution (−32 ) is the Gaussian
distribution with respect to ]; the arcsine distribution (−1 ) is the Gaussian
distribution with respect to B and C; the semicircle distribution (0 ) is the

free Gaussian and (∞ ) is the classical Gaussian distribution.

We first prove that for   0, the power semicircle distributions are not free

infinitely divisible.

Corollary 4.1. The power semicircle distribution ( ) is not infinitely divis-

ible in the free sense if   0
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Proof. It is enough to consider the case  = 1 From Proposition 2.8 we have that

2 =
1

22
(2)!

()!

Γ( + 2)

Γ( + 2 + )


Then, the kurtosis of  is obtained as

() =
4
(2 )

2
− 3 = − 3

( + 3)


Hence for   0, ()  −1 and the result follows by Proposition 3.2. ¤

For   −1 the power semicircle distributions are not infinitely divisible in the
monotone sense. The result is an immediate consequence of Proposition 3.3.

Corollary 4.2. The power semicircle distribution ( ) is not infinitely divis-

ible in the monotone sense if   −1
Proof. Follows since () = − 3

(+3)
 −15 for   −1 ¤

In summary we have the following general result. In the theorem below ◦ stands
for any of the convolutions classical , free ¢, monotone B or Boolean ].
Theorem 4.3. Let ◦ be the value of the Gaussian distribution (◦  ) with

respect to the corresponding convolution ◦. The power semicircle distribution

( ) is not infinitely divisible with respect to the convolution ◦ for   ◦ .

Remark 4.4. We conjecture that for   0, the distribution  ( 1) is free infin-

itely divisible. This conjecture is based on testing with MATLAB the positive

definiteness of a large number of free cumulants of  ( 1).

Remark 4.5. If the above conjecture were true, by Poincaré’s theorem the classical

Gaussian distribution would be free infinitely divisible. This fact is also supported

by using MATLAB for testing the positive definiteness of the free cumulants of

the Gaussian distribution. This conjecture has recently been proved to be true

in [4]. Moreover, we conjecture that the classical Gaussian distribution is a free

multiplicative convolution of the semicircle distribution in the sense of [2], [40].

Remark 4.6. By Theorem 3.7 and since () = − 3
(+3)

 0 for all  even

if ( ) were free infinitely divisible, it would not belong to B(P) for  ≥ 2.
Namely, ( ) would not be the image of a free infinitely divisible measure

under the Boolean Bercovici-Pata bijection B.

We conclude with the following strict bound for the free divisibility indicator

of the classical Gaussian distribution. Its proof follows from Theorem 3.7 and

Remarks 3.8 (b) and 4.5.

Theorem 4.7. Let  be the classical Gaussian distribution. Then 1 ≤ ()  2

and does not exist a free infinitely divisible distribution  on R such that  = B().
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